Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.130
Filtrar
1.
Methods Mol Biol ; 2788: 67-79, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656509

RESUMO

Derivatization of monosaccharides with 1-phenyl-3-methyl-5-pyrazolone (PMP) introduces two chromophores per sugar molecule. Their separation on a superficially porous C18 reverse-phase column, using common liquid chromatography equipment, results in short analysis times (under 20 min) and high sensitivity (limit of quantitation 1 nmol). This method allows for complex monosaccharide mixtures to be separated and quantified using a reasonably simple and safe derivatization procedure.


Assuntos
Cromatografia de Fase Reversa , Monossacarídeos , Cromatografia de Fase Reversa/métodos , Monossacarídeos/química , Monossacarídeos/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrofotometria Ultravioleta/métodos , Edaravone/química , Antipirina/análogos & derivados , Antipirina/química
2.
Medicina (Kaunas) ; 60(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38541080

RESUMO

Antioxidants, usually administered orally through the systemic route, are known to counteract the harmful effects of oxidative stress on retinal cells. The formulation of these antioxidants as eye drops might offer a new option in the treatment of oxidative retinopathies. In this review, we will focus on the use of some of the most potent antioxidants in treating retinal neuropathies. Melatonin, known for its neuroprotective qualities, may mitigate oxidative damage in the retina. N-acetyl-cysteine (NAC), a precursor to glutathione, enhances the endogenous antioxidant defense system, potentially reducing retinal oxidative stress. Idebenone, a synthetic analogue of coenzyme Q10, and edaravone, a free radical scavenger, contribute to cellular protection against oxidative injury. Epigallocatechin-3-gallate (EGCG), a polyphenol found in green tea, possesses anti-inflammatory and antioxidant effects that could be beneficial in cases of retinopathy. Formulating these antioxidants as eye drops presents a localized and targeted delivery method, ensuring effective concentrations reach the retina. This approach might minimize systemic side effects and enhance therapeutic efficacy. In this paper, we also introduce a relatively new strategy: the alkylation of two antioxidants, namely, edaravone and EGCG, to improve their insertion into the lipid bilayer of liposomes or even directly into cellular membranes, facilitating their crossing of epithelial barriers and targeting the posterior segment of the eye. The synergistic action of these antioxidants may offer a multifaceted defense against oxidative damage, holding potential for the treatment and management of oxidative retinopathies. Further research and clinical trials will be necessary to validate the safety and efficacy of these formulations, but the prospect of antioxidant-based eye drops represents a promising avenue for future ocular therapies.


Assuntos
Oftalmopatias , Doenças Retinianas , Humanos , Edaravone/farmacologia , Antioxidantes/farmacologia , Estresse Oxidativo , Doenças Retinianas/tratamento farmacológico , Soluções Oftálmicas
3.
Free Radic Biol Med ; 217: 126-140, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38531462

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which the death of motor neurons leads to loss of muscle function. Additionally, cognitive and circadian disruptions are common in ALS patients, contributing to disease progression and burden. Most ALS cases are sporadic, and environmental exposures contribute to their aetiology. However, animal models of these sporadic ALS cases are scarce. The small vertebrate zebrafish is a leading organism to model neurodegenerative diseases; previous studies have proposed bisphenol A (BPA) or ß-methylamino-l-alanine (BMAA) exposure to model sporadic ALS in zebrafish, damaging motor neurons and altering motor responses. Here we characterise the face and predictive validity of sporadic ALS models, showing their potential for the mechanistic study of ALS drugs. We phenotypically characterise the BPA and BMAA-induced models, going beyond motor activity and motor axon morphology, to include circadian, redox, proteostasis, and metabolomic phenotypes, and assessing their predictive validity for ALS modelling. BPA or BMAA exposure induced concentration-dependent activity impairments. Also, exposure to BPA but not BMAA induced motor axonopathy and circadian alterations in zebrafish larvae. Our further study of the BPA model revealed loss of habituation to repetitive startles, increased oxidative damage, endoplasmic reticulum (ER) stress, and metabolome abnormalities. The BPA-induced model shows predictive validity, since the approved ALS drug edaravone counteracted BPA-induced motor phenotypes, ER stress, and metabolic disruptions. Overall, BPA exposure is a promising model of ALS-related redox and ER imbalances, contributing to fulfil an unmet need for validated sporadic ALS models.


Assuntos
Esclerose Amiotrófica Lateral , Doenças Neurodegenerativas , Animais , Humanos , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo , Edaravone , Peixe-Zebra , Oxirredução
4.
Free Radic Biol Med ; 217: 116-125, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548187

RESUMO

PURPOSE: Ferroptosis has recently been recognized as a mechanism of cerebral ischemia-reperfusion (I/R) injury, attributed to blood-brain barrier (BBB) disruption. Edaravone dexboneol (Eda.B) is a novel neuroprotective agent widely employed in ischemic stroke, which is composed of edaravone (Eda) and dexborneol. This study aimed to investigate the protective effects of Eda.B on the BBB in cerebral I/R and explore its potential mechanisms. METHODS: Transient middle cerebral artery occlusion (tMCAO) Sprague-Dawley-rats model was used. Rats were randomly assigned to sham-operated group (sham, n = 20), model group (tMCAO, n = 20), Eda.B group (Eda.B, n = 20), Eda group (Eda, n = 20) and dexborneol group (dexborneol, n = 20), and Eda.B + Zinc protoporphyria group (Eda.B + ZnPP, n = 5). Infarct area, cellular apoptosis and neurofunctional recovery were accessed through TTC staining, TUNEL staining, and modified Garcia scoring system, respectively. BBB integrity was evaluated via Evans blue staining. Nuclear factor E2 related factor 2 (Nrf-2)/heme oxygenase 1 (HO-1)/glutathione peroxidase 4 (GPX4) signaling were qualified by Western blot. Transmission electron microscopy (TEM) revealed alterations in ipsilateral brain tissue among groups. Glutathione (GSH) and malondialdehyde (MDA) levels, and Fe2+ tissue content determination were detected. RESULTS: Eda.B effectively improved neurological deficits, diminished infarct area and cellular apoptosis, as well as ameliorated BBB integrity in tMCAO rats. Further, Eda.B significantly inhibited ferroptosis, as evidenced by ameliorated pathological features of mitochondria, down-regulated of MDA and Fe2+ levels and up-regulated GSH content. Mechanistically, Eda.B attenuated BBB disruption via Nrf-2-mediated ferroptosis, promoting nuclear translocation of Nrf-2, increasing HO-1, GPX4 expression, alleviating the loss of zonula occludens 1 (ZO-1) and occludin as well as decreasing 4-hydroxynonenal (4-HNE) level. CONCLUSIONS: This study revealed for the first time that Eda.B safeguarded the BBB from cerebral I/R injury by inhibiting ferroptosis through the activation of the Nrf-2/HO-1/GPX4 axis, providing a novel insight into the neuroprotective effect of Eda.B in cerebral I/R.


Assuntos
Isquemia Encefálica , Ferroptose , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Animais , Barreira Hematoencefálica , Heme Oxigenase-1/metabolismo , Edaravone/farmacologia , Ratos Sprague-Dawley , Isquemia Encefálica/patologia , Fármacos Neuroprotetores/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Reperfusão , Traumatismo por Reperfusão/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo
5.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474192

RESUMO

The brain is susceptible to oxidative stress, which is associated with various neurological diseases. Edaravone (MCI-186, 3-methyl-1 pheny-2-pyrazolin-5-one), a free radical scavenger, has promising effects by quenching hydroxyl radicals (∙OH) and inhibiting both ∙OH-dependent and ∙OH-independent lipid peroxidation. Edaravone was initially developed in Japan as a neuroprotective agent for acute cerebral infarction and was later applied clinically to treat amyotrophic lateral sclerosis (ALS), a neurodegenerative disease. There is accumulating evidence for the therapeutic effects of edaravone in a wide range of diseases related to oxidative stress, including ischemic stroke, ALS, Alzheimer's disease, and placental ischemia. These neuroprotective effects have expanded the potential applications of edaravone. Data from experimental animal models support its safety for long-term use, implying broader applications in various neurodegenerative diseases. In this review, we explain the unique characteristics of edaravone, summarize recent findings for specific diseases, and discuss its prospects for future therapeutic applications.


Assuntos
Esclerose Amiotrófica Lateral , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Animais , Feminino , Gravidez , Esclerose Amiotrófica Lateral/tratamento farmacológico , Antioxidantes/uso terapêutico , Antipirina , Edaravone/farmacologia , Edaravone/uso terapêutico , Sequestradores de Radicais Livres/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Placenta
6.
Ann Nucl Med ; 38(5): 337-349, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38360964

RESUMO

BACKGROUND: Brain ischemia-reperfusion injury is a complex process, and neuroinflammation is an important secondary contributing pathological event. Neutrophils play major roles in ischemic neuroinflammation. Once activated, neutrophils express formyl peptide receptors (FPRs), which are special receptors of a class of chemoattractants and may be potential targets to regulate the activity of neutrophils and control cerebral ischemic injury. This study was aimed to explore the ameliorating effect of Cyclosporin H (CsH), a potent FPR antagonist, on brain ischemic injury by inhibiting the activation and migration of neutrophils, and improving cerebral blood flow. METHODS: We employed a middle cerebral artery occlusion (MCAO) Model on rats and performed behavioral, morphological, and microPET imaging assays to investigate the potential restoring efficacy of CsH on cerebral ischemic damages. Peptide N-cinnamoyl-F-(D)L-F-(D)L-F (cFLFLF), an antagonist to the neutrophil FPR with a high binding affinity, was used for imaging neutrophil distribution. RESULTS: We found that CsH had similar effect with edaravone on improving the neurobehavioral deficient symptoms after cerebral ischemia-reperfusion, and treatment with CsH also alleviated ischemic cerebral infarction. Compared with the MCAO Model group, [18F]FDG uptake ratios of the CsH and edaravone treatment groups were significantly higher. The CsH-treated groups also showed significant increases in [18F]FDG uptake at 144 h when compared with that of 24 h. This result indicates that like edaravone, treatment with both doses of CsH promoted the recovery of blood supply after cerebral ischemic event. Moreover, MCAO-induced cerebral ischemia significantly increased the radiouptake of [68Ga]Ga-cFLFLF at 72 h after ischemia-reperfusion operation. Compared with MCAO Model group, radiouptake values of [68Ga]-cFLFLF in both doses of CsH and edaravone groups were all decreased significantly. These results showed that both doses of CsH resulted in a similar therapeutic effect with edaravone on inhibiting neutrophil infiltration in cerebral infarction. CONCLUSION: Potent FPR antagonist CsH is promisingly beneficial in attenuating neuroinflammation and improving neurobehavioral function against cerebral infarction. Therefore, FPR may become a novel target for regulating neuroinflammation and improving prognosis for ischemic cerebrovascular disorders.


Assuntos
Isquemia Encefálica , Ciclosporina , Traumatismo por Reperfusão , Ratos , Animais , Infiltração de Neutrófilos , Edaravone/farmacologia , Edaravone/uso terapêutico , Fluordesoxiglucose F18 , Doenças Neuroinflamatórias , Radioisótopos de Gálio/uso terapêutico , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/complicações , Tomografia por Emissão de Pósitrons , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Traumatismo por Reperfusão/diagnóstico por imagem , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/complicações
7.
Int Immunopharmacol ; 130: 111700, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38382262

RESUMO

Poststroke inflammation is essential in the mechanism of secondary injury, and it is orchestrated by resident microglia, astrocytes, and circulating immune cells. Edaravone dexborneol (EDB) is a combination of edaravone and borneol that has been identified as a clinical protectant for stroke management. In this study, we verified the anti-inflammatory effect of EDB in the mouse model of ischemia and investigated its modulatory action on inflammation-related cells. C57BL/6 male mice, which had the transient middle cerebral artery occlusion (tMCAO), were treated (i.p.) with EDB (15 mg/kg). EDB administration significantly reduced the brain infarction and improved the sensorimotor function after stroke. And EDB alleviated the neuroinflammation by restraining the polarization of microglia/macrophages and astrocyte toward proinflammatory phenotype and inhibiting the production of proinflammatory cytokines (such as IL-1ß, TNF-α, and IL-6) and chemokines (including MCP-1 and CXCL1). Furthermore, EDB ameliorated the MCAO-induced impairment of Blood-brain barrier (BBB) by suppressing the degradation of tight junction protein and attenuated the accumulation of peripheral leukocytes in the ischemic brain. Additionally, systemic EDB administration inhibited the macrophage phenotypic shift toward the M1 phenotype and the macrophage-dependent inflammatory response in the spleen and blood. Collectively, EDB protects against ischemic stroke injury by inhibiting the proinflammatory activation of microglia/macrophages and astrocytes and through reduction by invasion of circulating immune cells, which reduces central and peripheral inflammation following stroke.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Animais , Camundongos , Masculino , Microglia , Edaravone/uso terapêutico , Astrócitos/metabolismo , Isquemia Encefálica/metabolismo , Doenças Neuroinflamatórias , Camundongos Endogâmicos C57BL , Acidente Vascular Cerebral/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Inflamação/metabolismo , Leucócitos/metabolismo
8.
BMC Public Health ; 24(1): 436, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347500

RESUMO

BACKGROUND: Edaravone dexborneol and dl-3-n-butylphthalide are two innovative brain cytoprotective drugs from China that have been approved and widely prescribed for acute ischemic stroke, and the cost of the two drugs are partially paid by the Chinese medical insurance system. This study aimed to investigate and compare the cost-effectiveness of edaravone dexborneol versus dl-3-n-butylphthalide for acute ischemic stroke from the Chinese healthcare system's perspective. METHODS: A model combining a short-term decision tree model with 90 days and a long-term Markov model with a life-time horizon (40 years) was developed to simulate the cost-effectiveness of edaravone dexborneol versus dl-3-n-butylphthalide for acute ischemic stroke over a lifetime horizon. Since the absence of a head-to-head clinical comparison of two therapies, an unanchored matching-adjusted indirect comparison (MAIC) was conducted by adjusting the patient characteristics using individual patient data from pivotal phase III trial of edaravone dexborneol and published aggregated data of dl-3-n-butylphthalide. Health outcomes were measured in quality-adjusted life years (QALYs). Utilities and costs (Chinese Yuan, CNY) were derived from publications and open-access database. One-way and probabilistic sensitivity analyses were performed to evaluate the robustness of results. RESULTS: Compared with patients in dl-3-n-butylphthalide arm, edaravone dexborneol arm was found to be cost-effective in 90 days and highly cost-effective as the study horizons extended. With a similar direct medical cost, patients in edaravone dexborneol arm slightly gained an additional 0.1615 QALYs in life-time. In the long term (40 years), patients in edaravone dexborneol arm and dl-3-n-butylphthalide arm yielded 8.0351 and 7.8736 QALYs with the overall direct medical cost of CNY 29,185.23 and CNY 29,940.28, respectively. The one-way sensitivity analysis suggested that the incremental cost-effectiveness ratio was most sensitive to the price of edaravone dexborneol and dl-3-n-butylphthalide. CONCLUSION: Edaravone dexborneol is a cost-effective alternative compared with dl-3-n-butylphthalide for acute ischemic stroke patients in current medical setting of China.


Assuntos
Benzofuranos , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Edaravone/uso terapêutico , Análise Custo-Benefício , Atenção à Saúde , Acidente Vascular Cerebral/tratamento farmacológico , Anos de Vida Ajustados por Qualidade de Vida
9.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338912

RESUMO

Despite significant advancements in understanding the causes and progression of tumors, cancer remains one of the leading causes of death worldwide. In light of advances in cancer therapy, there has been a growing interest in drug repurposing, which involves exploring new uses for medications that are already approved for clinical use. One such medication is edaravone, which is currently used to manage patients with cerebral infarction and amyotrophic lateral sclerosis. Due to its antioxidant and anti-inflammatory properties, edaravone has also been investigated for its potential activities in treating cancer, notably as an anti-proliferative and cytoprotective drug against side effects induced by traditional cancer therapies. This comprehensive review aims to provide updates on the various applications of edaravone in cancer therapy. It explores its potential as a standalone antitumor drug, either used alone or in combination with other medications, as well as its role as an adjuvant to mitigate the side effects of conventional anticancer treatments.


Assuntos
Esclerose Amiotrófica Lateral , Neoplasias , Fármacos Neuroprotetores , Humanos , Edaravone/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Esclerose Amiotrófica Lateral/tratamento farmacológico , Antioxidantes/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/induzido quimicamente , Sequestradores de Radicais Livres/farmacologia
10.
ACS Appl Mater Interfaces ; 16(7): 8310-8320, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38343060

RESUMO

The COVID-19 pandemic has become an unprecedented global medical emergency, resulting in more than 5 million deaths. Acute respiratory distress syndrome (ARDS) caused by COVID-19, characterized by the release of a large number of pro-inflammatory cytokines and the production of excessive toxic ROS, is the most common serious complication leading to death. To develop new strategies for treating ARDS caused by COVID-19, a mouse model of ARDS was established by using lipopolysaccharide (LPS). Subsequently, we have constructed a novel nanospray with anti-inflammatory and antioxidant capacity by loading pentoxifylline (PTX) and edaravone (Eda) on zeolite imidazolate frameworks-8 (ZIF-8). This nanospray was endowed with synergetic therapy, which could kill two birds with one stone: (1) the loaded PTX played a powerful anti-inflammatory role by inhibiting the activation of inflammatory cells and the synthesis of pro-inflammatory cytokines; (2) Eda served as a free radical scavenger in ARDS. Furthermore, compared with the traditional intravenous administration, nanosprays can be administered directly and inhaled efficiently and reduce the risk of systemic adverse reactions greatly. This nanospray could not only coload two drugs efficiently but also realize acid-responsive release on local lung tissue. Importantly, ZIF8-EP nanospray showed an excellent therapeutic effect on ARDS in vitro and in vivo, which provided a new direction for the treatment of ARDS.


Assuntos
COVID-19 , Pentoxifilina , Síndrome do Desconforto Respiratório , Animais , Camundongos , Humanos , Pentoxifilina/farmacologia , Pentoxifilina/uso terapêutico , Edaravone/uso terapêutico , Pandemias , Pulmão , Síndrome do Desconforto Respiratório/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Citocinas , Concentração de Íons de Hidrogênio , Lipopolissacarídeos
11.
Eur J Pharmacol ; 966: 176317, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38216081

RESUMO

Oxidative stress and endoplasmic reticulum stress (ERS) was associated with the development of asthma. Edaravone (EDA) plays a classical role to prevent the occurrence and development of oxidative stress-related diseases. Herein, we investigated the involvement and signaling pathway of EDA in asthma, with particular emphasis on its impact on type 2 innate lymphoid cells (ILC2) and CD4+T cells, and then further elucidated whether EDA could inhibit house dust mite (HDM)-induced allergic asthma by affecting oxidative stress and ERS. Mice received intraperitoneally injection of EDA (10 mg/kg, 30 mg/kg), dexamethasone (DEX) and N-acetylcysteine (NAC), with the latter two used as positive control drugs. DEX and high dose of EDA showed better therapeutic effects in alleviating airway inflammation and mucus secretion in mice, along with decreasing eosinophils and neutrophils in bronchoalveolar lavage fluid (BALF) than NAC. Further, the protein levels of IL-33 in lung tissues were inhibited by EDA, leading to reduced activation of ILC2s in the lung. EDA treatment alleviated the activation of CD4+ T cells in lung tissues of HDM-induced asthmatic mice and reduced Th2 cytokine secretion in BALF. ERS-related markers (p-eIF2α, IRE1α, CHOP, GRP78) were decreased after treatment of EDA compared to HDM group. Malondialdehyde (MDA), glutathione (GSH), hydrogen peroxide (H2O2), and superoxide dismutase (SOD) were detected to evaluate the oxidant stress in lung tissues. EDA showed a protective effect against oxidant stress. In conclusion, our findings demonstrated that EDA could suppress allergic airway inflammation by inhibiting oxidative stress and ERS, suggesting to serve as an adjunct medication for asthma in the future.


Assuntos
Asma , Imunidade Inata , Camundongos , Animais , Edaravone/farmacologia , Edaravone/uso terapêutico , Citocinas/metabolismo , Endorribonucleases/metabolismo , Peróxido de Hidrogênio/farmacologia , Linfócitos , Proteínas Serina-Treonina Quinases/metabolismo , Asma/metabolismo , Pulmão , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Estresse Oxidativo , Oxidantes/farmacologia , Pyroglyphidae/metabolismo , Modelos Animais de Doenças
12.
Neurosciences (Riyadh) ; 29(1): 25-31, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38195127

RESUMO

OBJECTIVES: To assess the effects of decompressive craniectomy combined with edaravone on the postoperative neurological functions and hemodynamics of patients with severe traumatic brain injury (STBI). METHODS: The subjects included totally 186 STBI patients admitted during January 2018 and January 2021. The random number table method was adopted to set an operation group (n=82) and a combined medication group (n=104) for the subjects. The changes of the clinical indicators were observed. RESULTS: Compared with the operation group, the combined medication group had higher Neurobehavioral Cognitive Status Examination score, Barthel index score, total response rate and heart rate (p<0.05). Besides, by contrast to those of the operation group, the mean arterial pressure, myocardial zymogram indicators, postoperative neurological function indicators and total incidence rate of complications of the combined medication group were reduced (p<0.05). In comparison with the operation group, the combined medication group exhibited raised ipsilateral contralateral blood velocities (p<0.05). Furthermore, the combined medication group had a better postoperative 1-year prognosis than the operation group (p<0.05). CONCLUSION: Edaravone in combination with decompressive craniectomy benefits the postoperative improvement of neurological functions of STBI patients, effectively stabilizes the hemodynamics, induces few complications and improves the prognosis.


Assuntos
Lesões Encefálicas Traumáticas , Craniectomia Descompressiva , Humanos , Edaravone/uso terapêutico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/cirurgia , Hemodinâmica , Frequência Cardíaca
13.
Eur J Med Chem ; 266: 116155, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266553

RESUMO

Novel hybrids of selective COX-2 inhibitors (coxibs) and active derivatives of free radical scavenger edaravone were designed to overcome the risk of cardiovascular events and stroke increased by NSAIDs (nonsteroidal anti-inflammatory drugs) in this study. All the hybrids were assayed for the COX-2 inhibitory and DPPH (2, 2-diphenyl-1-picrylhydrazyl) free radical scavenging activities in vitro. Finally, we found a series of hybrids with good inhibitory activity and selectivity of COX-2 and excellent free radical scavenging activity in vitro. The most promising compound 6a (WYZ90) exhibited very potent COX-2 inhibitory activity (COX-2, IC50 = 75 nM), weak COX-1 inhibitory activity (COX-1, IC50 = 5734 nM), better free radical scavenging activity (DPPH, IC50 = 19.9 µM) than edaravone, moderate drug-likeness and ADME properties in silico, acceptable pharmacokinetic properties (T1/2 = 4.16 h, 10 mg/kg, o.p.) and oral bioavailability (F% = 36.03 %) in mice. In addition, compound WYZ90 showed similar analgesic activity to the selective COX-2 inhibitor celecoxib in acetic acid-induced mice and better antioxidant activity in Fe2+-induced lipid peroxidation in mouse liver tissue homogenate than edaravone. In conclusion, this study provided a novel class of coxibs containing edaravone moiety as COX-2 selective NSAIDs with free radical scavenging activity and the candidate compound WYZ90 showed not only similar selective COX-2 inhibitory and analgesic activity to celecoxib but also better free radical scavenging and antioxidant activity than edaravone.


Assuntos
Anti-Inflamatórios não Esteroides , Inibidores de Ciclo-Oxigenase 2 , Camundongos , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Edaravone/farmacologia , Ciclo-Oxigenase 2 , Celecoxib , Antioxidantes , Analgésicos/farmacologia , Radicais Livres/química
14.
Anat Rec (Hoboken) ; 307(2): 372-384, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37475155

RESUMO

Inflammatory injury following ischemia-reperfusion (I/R) severely limits the efficacy of stroke treatment. Edaravone dexborneol (C.EDA) has been shown to reduce inflammation following a cerebral hemorrhage. However, the precise anti-inflammatory mechanism of C.EDA is unknown. In this study, we investigated whether C.EDA provides neuroprotection after I/R in rats, as well as the potential mechanisms involved. A middle cerebral artery occlusion/reperfusion (I/R) model was created using Sprague-Dawley rats. The blood flow of the central cerebral artery was monitored by a laser speckle imaging system. The neurological score was used to assess behavioral improvement. Cerebral infarction volume was measured by TTC staining. And the integrity of the blood-brain barrier was detected by Evan's blue staining. The expression of the nuclear factor kappa-B (NF-κB)/ the NOD-like receptor protein (NLRP3) inflammasome signal pathway and microglia polarization were detected by immunofluorescence and Western blotting. The cerebral blood flow ratio indicates that the cerebral I/R model was successfully established. After reperfusion for 72 h, the improvement of neurological scores, infarct volume reduction, and integrity of the blood-brain barrier was observed in I/R rats with C.EDA treatment. Meanwhile, the immunofluorescence result showed that the expression of iNOS, NLRP3, and NF-κB protein was decreased and the level of Arg1 was increased. Western blot analysis showed that the expression of NF-κB/NLRP3 signal pathway-related protein was decreased. In conclusion, this study indicates that C.EDA alleviates I/R injury by blocking the activation of the NLRP3 inflammasome and regulating the polarization of M1/M2 microglia via the NF-κB signal pathway.


Assuntos
NF-kappa B , Traumatismo por Reperfusão , Ratos , Animais , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Edaravone/farmacologia , Ratos Sprague-Dawley , Proteínas NLR , Transdução de Sinais/fisiologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo
15.
Addiction ; 119(4): 717-729, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38049955

RESUMO

AIMS: To measure the therapeutic effect of an anti-oxidant, edaravone (EDV), or neurotrophic treatment with nerve growth factor (NGF) as an add-on treatment for alcohol-related brain damage (ARBD). DESIGN: Multi-centre, randomised, single-blinded, comparative clinical trial. SETTING AND PARTICIPANTS: One hundred and twenty-two inpatients recruited from seven hospitals in different regions of China, all diagnosed with ARBD and aged 18 to 65 years old; among them, only two were female. INTERVENTION AND COMPARATOR: Patients were randomly assigned to receive one of three treatments for 2 weeks: 40 patients, treatment as usual (TAU: a combination of intramuscular injections of thiamine, intravenous infusions of other B vitamins with vitamin C and oral medication with vitamin E per day); 40, EDV add-on treatment to TAU (intravenous infusion with 30 mg of EDV twice per day); and 42, NGF add-on treatment to TAU (intramuscular injection of 20 µg of NGF per day). The patients underwent follow-up for 24 weeks. MEASUREMENTS: The primary outcome was the composite score of executive cognitive function in the 2nd week after treatment, which was measured as the mean of the Z scores of the assessments, including the digit symbol substitute test (DSST), digit span memory test-forward (DST-F), digit span memory test-reverse (DST-R) and space span memory test (SSMT). The secondary outcomes were the composite scores at later follow-ups, the score for each component of cognitive function, global cognitive function measured by the Montreal Cognitive Assessment (MoCA), craving for alcohol and the safety of the therapies. FINDINGS: EDV add-on treatment improved the composite score of executive cognitive function better than TAU in the 2nd week (adjusted mean difference: 0.24, 95% confidence interval 0.06 to 0.41; P = 0.008), but NGF add-on treatment did not (adjusted mean difference: 0.07, 95% confidence interval -0.09 to 0.24; P = 0.502). During the follow-up to 24 weeks, EDV add-on treatment improved the composite score of executive cognitive function and DST-R score better than TAU (both P < 0.01). Craving for alcohol was relieved in all three groups. No severe adverse events were observed. CONCLUSION: The short-term addition of edaravone to supplementary therapy treatment for alcohol-related brain damage (ARBD) improved executive cognitive function in patients with ARBD.


Assuntos
Cognição , Fator de Crescimento Neural , Humanos , Feminino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Masculino , Edaravone/uso terapêutico , Ácido Ascórbico/uso terapêutico , Etanol , Encéfalo , Resultado do Tratamento
16.
J Nat Med ; 78(2): 312-327, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38143256

RESUMO

Our previous study demonstrated neuroprotective and therapeutic effects of a standardized flavonoid extract from leaves of Diospyros kaki L.f. (DK) on middle cerebral artery occlusion-and-reperfusion (MCAO/R)-induced brain injury and its underlying mechanisms. This study aimed to clarify flavonoid components responsible for the effects of DK using in vitro and in vivo transient brain ischemic models. Organotypic hippocampal slice cultures (OHSCs) subjected to oxygen- and glucose-deprivation (OGD) were performed to evaluate in vitro neuroprotective activity of DK extract and nine isolated flavonoid components. MCAO/R mice were employed to elucidate in vivo neuroprotective effects of the flavonoid component that exhibited the most potent neuroprotective effect in OHSCs. DK extract and seven flavonoids [quercetin, isoquercetin, hyperoside, quercetin-3-O-(2″-O-galloyl-ß-D-galactopyranoside), kaempferol, astragalin, and kaempferol-3-O-(2″-O-galloyl-ß-D-glucopyranoside) compound (9)] attenuated OGD-induced neuronal cell damage and compound (9) possessed the most potent neuroprotective activity in OHSCs. The MCAO/R mice showed cerebral infarction, massive weight loss, characteristic neurological symptoms, and deterioration of neuronal cells in the brain. Compound (9) and a reference drugs, edaravone, significantly attenuated these physical and neurological impairments. Compound (9) mitigated the blood-brain barrier dysfunction and the change of glutathione and malondialdehyde content in the MCAO mouse brain. Edaravone suppressed the oxidative stress but did not significantly affect the blood-brain barrier permeability. The present results indicated that compound (9) is a flavonoid constituent of DK with a potent neuroprotective activity against transient ischemia-induced brain damage and this action, at least in part, via preservation of blood-brain barrier integrity and suppression of oxidative stress caused by ischemic insult.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Diospyros , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Camundongos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Quercetina/farmacologia , Quercetina/uso terapêutico , Edaravone/uso terapêutico , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Infarto Cerebral/tratamento farmacológico , Flavonoides/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Oxigênio , Lesões Encefálicas/tratamento farmacológico
17.
Int J Pharm ; 651: 123748, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154533

RESUMO

Since ischemic stroke occurs by a combination of multiple mechanisms, therapies that modulate multiple mechanisms are required for its treatment. The combination of edaravone (EDA) and borneol can significantly ameliorate the symptoms of neurological deficits in cerebral ischemia-reperfusion model in rats. In this study, the solubility of borneol and edaravone was improved by hydroxypropyl-ß-cyclodextrin and PEG400. Furthermore, a nasal temperature-sensitive hydrogel containing both edaravone and borneol inclusion complex (EDA-BP TSGS) was developed to overcome the obstacles of ischemic stroke treatment including the obstruction of the blood-brain barrier (BBB) and the unavailability and untimely of intravenous injection. The effectiveness of the thermosensitive hydrogel was investigated in transient middle cerebral artery occlusion/reperfusion model rats (MCAO/R). The results showed that EDA-BP TSGS could significantly alleviate the symptoms of neurological deficits and decrease the cerebral infarct area and the degree of brain damage. In summary, nasal EDA-BP TSGS is a secure and effective brain-targeting formulation that may provide a viable option for the clinical prophylaxis and treatment of ischemic stroke.


Assuntos
Isquemia Encefálica , Canfanos , AVC Isquêmico , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Ratos , Animais , Edaravone/uso terapêutico , AVC Isquêmico/tratamento farmacológico , Temperatura , Antipirina , Isquemia Encefálica/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico
18.
Dokl Biochem Biophys ; 512(1): 284-287, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38093132

RESUMO

New hybrid structures based on memantine and edaravone molecules, in which the pyrazolone ring and adamantane fragments are linked by an alkyl linker, were synthesized. It was found that, in addition to the ability to block the intrachannel site of NMDA receptors, the new hybrid compounds exhibit the property of blockers of the allosteric site of NMDA receptors, which is not inherent in memantine and edaravone preparations. The most active hit compound was determined, which, along with the properties of a two-site blocker of the NMDA receptor, exhibits a pronounced activity as an inhibitor of lipid peroxidation, similarly to the drug edaravone.


Assuntos
Adamantano , Memantina , Memantina/farmacologia , Memantina/química , Edaravone , Receptores de N-Metil-D-Aspartato , Adamantano/farmacologia
19.
Clin Ther ; 45(12): 1251-1258, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37953075

RESUMO

PURPOSE: Edaravone is a neuroprotective agent approved as an intravenous treatment for amyotrophic lateral sclerosis (ALS). The intravenous administration of edaravone places a burden on patients and there is a clinical need for oral agents for the treatment of ALS. This report aimed to assess the pharmacokinetics and safety of an edaravone oral suspension in patients with ALS after oral and percutaneous endoscopic gastrostomy (PEG) tube administration. METHODS: Two single-dose, open-label phase 1 clinical studies were conducted. Edaravone oral suspension (105 mg of edaravone in 5 mL aqueous suspension) was administered orally and via PEG tube to 9 and 6 Japanese patients with ALS, respectively. Plasma and urinary pharmacokinetics of unchanged edaravone and its metabolites (sulfate and glucuronide conjugates) were determined. Safety was also evaluated. FINDINGS: After reaching maximum plasma concentration, the mean plasma concentration-time of unchanged edaravone showed a triphasic elimination. Mean plasma concentration-time profiles of the metabolites were higher than those of unchanged edaravone. The mean urinary excretion ratios were higher for the glucuronide conjugate than for either unchanged edaravone or the sulfate conjugate. In patients administered edaravone orally, a single adverse event occurred (blood urine present), which was mild and improved without medical intervention. No adverse drug reactions or serious adverse events were reported. In patients administered edaravone via PEG tube, 5 treatment-emergent adverse events were reported in 3 patients; none were related to the study drug. No adverse drug reactions were reported. IMPLICATIONS: In patients with ALS, a single dose of edaravone oral suspension was well absorbed and mainly eliminated in urine as the glucuronide conjugate. No safety concerns emerged. Pharmacokinetics were similar to those previously reported in healthy participants following oral administration. This indicates that effective drug concentrations were achieved and edaravone can be successfully administered both orally and via a PEG tube in patients with ALS. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov, NCT04176224 (oral administration) and NCT04254913 (PEG tube administration), www. CLINICALTRIALS: gov.


Assuntos
Esclerose Amiotrófica Lateral , Fármacos Neuroprotetores , Humanos , Esclerose Amiotrófica Lateral/tratamento farmacológico , Edaravone/farmacocinética , Glucuronídeos/uso terapêutico , Fármacos Neuroprotetores/farmacocinética , Sulfatos/uso terapêutico
20.
Molecules ; 28(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38005288

RESUMO

Currently, there are no effective drugs for the treatment of amyotrophic lateral sclerosis (ALS). Only two drugs-edaravone and riluzole-have been approved, but they have very limited efficacy. The aim of this work was to modify the structural core of the Edaravone-phenylpyrazolone moiety and combine it with aminoadamantane pharmacophore in order to expand the spectrum of its action to a number of processes involved in the pathogenesis of ALS. New conjugates of edaravone derivatives with 1-aminoadamantanes combined with alkylene or hydroxypropylene spacers were synthesized, and their biological activity was investigated. Compounds were found that could inhibit lipid peroxidation and calcium-related mitochondrial permeability, block fast sodium currents of CNS neurons, and reduce aggregation of the mutated form of the FUS-protein typical to ALS. So, the proposed modification of the edaravone molecule has allowed the obtaining of new original structures that combine some prospective therapeutic mechanisms against key chains of the pathogenesis of ALS. The identified lead compounds can be used for further optimization and development of new promising drugs on this basis for the treatment of ALS.


Assuntos
Adamantano , Esclerose Amiotrófica Lateral , Fármacos Neuroprotetores , Humanos , Edaravone/farmacologia , Edaravone/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Esclerose Amiotrófica Lateral/tratamento farmacológico , Riluzol , Amantadina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...